ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.00133
17
0

Unsupervised and Supervised Structure Learning for Protein Contact Prediction

31 August 2020
S. Sun
ArXivPDFHTML
Abstract

Protein contacts provide key information for the understanding of protein structure and function, and therefore contact prediction from sequences is an important problem. Recent research shows that some correctly predicted long-range contacts could help topology-level structure modeling. Thus, contact prediction and contact-assisted protein folding also proves the importance of this problem. In this thesis, I will briefly introduce the extant related work, then show how to establish the contact prediction through unsupervised graphical models with topology constraints. Further, I will explain how to use the supervised deep learning methods to further boost the accuracy of contact prediction. Finally, I will propose a scoring system called diversity score to measure the novelty of contact predictions, as well as an algorithm that predicts contacts with respect to the new scoring system.

View on arXiv
Comments on this paper