ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.10454
18
10

FOCAL: A Forgery Localization Framework based on Video Coding Self-Consistency

24 August 2020
Sebastiano Verde
Paolo Bestagini
Simone Milani
G. Calvagno
Stefano Tubaro
ArXivPDFHTML
Abstract

Forgery operations on video contents are nowadays within the reach of anyone, thanks to the availability of powerful and user-friendly editing software. Integrity verification and authentication of videos represent a major interest in both journalism (e.g., fake news debunking) and legal environments dealing with digital evidence (e.g., a court of law). While several strategies and different forensics traces have been proposed in recent years, latest solutions aim at increasing the accuracy by combining multiple detectors and features. This paper presents a video forgery localization framework that verifies the self-consistency of coding traces between and within video frames, by fusing the information derived from a set of independent feature descriptors. The feature extraction step is carried out by means of an explainable convolutional neural network architecture, specifically designed to look for and classify coding artifacts. The overall framework was validated in two typical forgery scenarios: temporal and spatial splicing. Experimental results show an improvement to the state-of-the-art on temporal splicing localization and also promising performance in the newly tackled case of spatial splicing, on both synthetic and real-world videos.

View on arXiv
Comments on this paper