ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.09892
16
3

Few-Shot Learning with Intra-Class Knowledge Transfer

22 August 2020
Vivek Roy
Yan Xu
Yu-xiong Wang
Kris M. Kitani
Ruslan Salakhutdinov
M. Hebert
    VLM
ArXivPDFHTML
Abstract

We consider the few-shot classification task with an unbalanced dataset, in which some classes have sufficient training samples while other classes only have limited training samples. Recent works have proposed to solve this task by augmenting the training data of the few-shot classes using generative models with the few-shot training samples as the seeds. However, due to the limited number of the few-shot seeds, the generated samples usually have small diversity, making it difficult to train a discriminative classifier for the few-shot classes. To enrich the diversity of the generated samples, we propose to leverage the intra-class knowledge from the neighbor many-shot classes with the intuition that neighbor classes share similar statistical information. Such intra-class information is obtained with a two-step mechanism. First, a regressor trained only on the many-shot classes is used to evaluate the few-shot class means from only a few samples. Second, superclasses are clustered, and the statistical mean and feature variance of each superclass are used as transferable knowledge inherited by the children few-shot classes. Such knowledge is then used by a generator to augment the sparse training data to help the downstream classification tasks. Extensive experiments show that our method achieves state-of-the-art across different datasets and nnn-shot settings.

View on arXiv
Comments on this paper