ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.09192
20
5

PicoDomain: A Compact High-Fidelity Cybersecurity Dataset

20 August 2020
Craig Laprade
Benjamin Bowman
H. H. Huang
ArXivPDFHTML
Abstract

Analysis of cyber relevant data has become an area of increasing focus. As larger percentages of businesses and governments begin to understand the implications of cyberattacks, the impetus for better cybersecurity solutions has increased. Unfortunately, current cybersecurity datasets either offer no ground truth or do so with anonymized data. The former leads to a quandary when verifying results and the latter can remove valuable information. Additionally, most existing datasets are large enough to make them unwieldy during prototype development. In this paper we have developed the PicoDomain dataset, a compact high-fidelity collection of Zeek logs from a realistic intrusion using relevant Tools, Techniques, and Procedures. While simulated on a small-scale network, this dataset consists of traffic typical of an enterprise network, which can be utilized for rapid validation and iterative development of analytics platforms. We have validated this dataset using traditional statistical analysis and off-the-shelf Machine Learning techniques.

View on arXiv
Comments on this paper