ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.09052
8
26

On transversality of bent hyperplane arrangements and the topological expressiveness of ReLU neural networks

20 August 2020
J. E. Grigsby
Kathryn A. Lindsey
ArXivPDFHTML
Abstract

Let F:R^n -> R be a feedforward ReLU neural network. It is well-known that for any choice of parameters, F is continuous and piecewise (affine) linear. We lay some foundations for a systematic investigation of how the architecture of F impacts the geometry and topology of its possible decision regions for binary classification tasks. Following the classical progression for smooth functions in differential topology, we first define the notion of a generic, transversal ReLU neural network and show that almost all ReLU networks are generic and transversal. We then define a partially-oriented linear 1-complex in the domain of F and identify properties of this complex that yield an obstruction to the existence of bounded connected components of a decision region. We use this obstruction to prove that a decision region of a generic, transversal ReLU network F: R^n -> R with a single hidden layer of dimension (n + 1) can have no more than one bounded connected component.

View on arXiv
Comments on this paper