ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.08143
22
202

How2Sign: A Large-scale Multimodal Dataset for Continuous American Sign Language

18 August 2020
A. Duarte
Shruti Palaskar
Lucas Ventura
Deepti Ghadiyaram
Kenneth DeHaan
Florian Metze
Jordi Torres
Xavier Giró-i-Nieto
    SLR
ArXivPDFHTML
Abstract

One of the factors that have hindered progress in the areas of sign language recognition, translation, and production is the absence of large annotated datasets. Towards this end, we introduce How2Sign, a multimodal and multiview continuous American Sign Language (ASL) dataset, consisting of a parallel corpus of more than 80 hours of sign language videos and a set of corresponding modalities including speech, English transcripts, and depth. A three-hour subset was further recorded in the Panoptic studio enabling detailed 3D pose estimation. To evaluate the potential of How2Sign for real-world impact, we conduct a study with ASL signers and show that synthesized videos using our dataset can indeed be understood. The study further gives insights on challenges that computer vision should address in order to make progress in this field. Dataset website: http://how2sign.github.io/

View on arXiv
Comments on this paper