ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.07291
16
5

Evaluating for Diversity in Question Generation over Text

17 August 2020
M. Schlichtkrull
Weiwei Cheng
ArXivPDFHTML
Abstract

Generating diverse and relevant questions over text is a task with widespread applications. We argue that commonly-used evaluation metrics such as BLEU and METEOR are not suitable for this task due to the inherent diversity of reference questions, and propose a scheme for extending conventional metrics to reflect diversity. We furthermore propose a variational encoder-decoder model for this task. We show through automatic and human evaluation that our variational model improves diversity without loss of quality, and demonstrate how our evaluation scheme reflects this improvement.

View on arXiv
Comments on this paper