ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06571
26
11

Toward an End-to-End Auto-tuning Framework in HPC PowerStack

14 August 2020
Xingfu Wu
Aniruddha Marathe
Siddhartha Jana
O. Vysocky
Jophin John
Andrea Bartolini
L. Ríha
Michael Gerndt
V. Taylor
Sridutt Bhalachandra
ArXivPDFHTML
Abstract

Efficiently utilizing procured power and optimizing performance of scientific applications under power and energy constraints are challenging. The HPC PowerStack defines a software stack to manage power and energy of high-performance computing systems and standardizes the interfaces between different components of the stack. This survey paper presents the findings of a working group focused on the end-to-end tuning of the PowerStack. First, we provide a background on the PowerStack layer-specific tuning efforts in terms of their high-level objectives, the constraints and optimization goals, layer-specific telemetry, and control parameters, and we list the existing software solutions that address those challenges. Second, we propose the PowerStack end-to-end auto-tuning framework, identify the opportunities in co-tuning different layers in the PowerStack, and present specific use cases and solutions. Third, we discuss the research opportunities and challenges for collective auto-tuning of two or more management layers (or domains) in the PowerStack. This paper takes the first steps in identifying and aggregating the important R&D challenges in streamlining the optimization efforts across the layers of the PowerStack.

View on arXiv
Comments on this paper