ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06006
19
8

Textual Echo Cancellation

13 August 2020
Shaojin Ding
Ye Jia
Ke Hu
Quan Wang
ArXivPDFHTML
Abstract

In this paper, we propose Textual Echo Cancellation (TEC) - a framework for cancelling the text-to-speech (TTS) playback echo from overlapping speech recordings. Such a system can largely improve speech recognition performance and user experience for intelligent devices such as smart speakers, as the user can talk to the device while the device is still playing the TTS signal responding to the previous query. We implement this system by using a novel sequence-to-sequence model with multi-source attention that takes both the microphone mixture signal and source text of the TTS playback as inputs, and predicts the enhanced audio. Experiments show that the textual information of the TTS playback is critical to enhancement performance. Besides, the text sequence is much smaller in size compared with the raw acoustic signal of the TTS playback, and can be immediately transmitted to the device or ASR server even before the playback is synthesized. Therefore, our proposed approach effectively reduces Internet communication and latency compared with alternative approaches such as acoustic echo cancellation (AEC).

View on arXiv
Comments on this paper