ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05938
14
31

RGB cameras failures and their effects in autonomous driving applications

13 August 2020
Andrea Ceccarelli
Francesco Secci
ArXivPDFHTML
Abstract

RGB cameras are one of the most relevant sensors for autonomous driving applications. It is undeniable that failures of vehicle cameras may compromise the autonomous driving task, possibly leading to unsafe behaviors when images that are subsequently processed by the driving system are altered. To support the definition of safe and robust vehicle architectures and intelligent systems, in this paper we define the failure modes of a vehicle camera, together with an analysis of effects and known mitigations. Further, we build a software library for the generation of the corresponding failed images and we feed them to six object detectors for mono and stereo cameras and to the self-driving agent of an autonomous driving simulator. The resulting misbehaviors with respect to operating with clean images allow a better understanding of failures effects and the related safety risks in image-based applications.

View on arXiv
Comments on this paper