ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05666
12
23

Dialogue State Induction Using Neural Latent Variable Models

13 August 2020
Qingkai Min
Libo Qin
Zhiyang Teng
Xiao Liu
Yue Zhang
ArXivPDFHTML
Abstract

Dialogue state modules are a useful component in a task-oriented dialogue system. Traditional methods find dialogue states by manually labeling training corpora, upon which neural models are trained. However, the labeling process can be costly, slow, error-prone, and more importantly, cannot cover the vast range of domains in real-world dialogues for customer service. We propose the task of dialogue state induction, building two neural latent variable models that mine dialogue states automatically from unlabeled customer service dialogue records. Results show that the models can effectively find meaningful slots. In addition, equipped with induced dialogue states, a state-of-the-art dialogue system gives better performance compared with not using a dialogue state module.

View on arXiv
Comments on this paper