30
7

Content-based Music Similarity with Triplet Networks

Abstract

We explore the feasibility of using triplet neural networks to embed songs based on content-based music similarity. Our network is trained using triplets of songs such that two songs by the same artist are embedded closer to one another than to a third song by a different artist. We compare two models that are trained using different ways of picking this third song: at random vs. based on shared genre labels. Our experiments are conducted using songs from the Free Music Archive and use standard audio features. The initial results show that shallow Siamese networks can be used to embed music for a simple artist retrieval task.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.