ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.03964
22
8

DQI: A Guide to Benchmark Evaluation

10 August 2020
Swaroop Mishra
Anjana Arunkumar
Bhavdeep Singh Sachdeva
Chris Bryan
Chitta Baral
ArXivPDFHTML
Abstract

A `state of the art' model A surpasses humans in a benchmark B, but fails on similar benchmarks C, D, and E. What does B have that the other benchmarks do not? Recent research provides the answer: spurious bias. However, developing A to solve benchmarks B through E does not guarantee that it will solve future benchmarks. To progress towards a model that `truly learns' an underlying task, we need to quantify the differences between successive benchmarks, as opposed to existing binary and black-box approaches. We propose a novel approach to solve this underexplored task of quantifying benchmark quality by debuting a data quality metric: DQI.

View on arXiv
Comments on this paper