ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.03518
11
12

Scalable FastMDP for Pre-departure Airspace Reservation and Strategic De-conflict

8 August 2020
J. R. Bertram
Peng Wei
Joseph Zambreno
ArXivPDFHTML
Abstract

Pre-departure flight plan scheduling for Urban Air Mobility (UAM) and cargo delivery drones will require on-demand scheduling of large numbers of aircraft. We examine the scalability of an algorithm known as FastMDP which was shown to perform well in deconflicting many dozens of aircraft in a dense airspace environment with terrain. We show that the algorithm can adapted to perform first-come-first-served pre-departure flight plan scheduling where conflict free flight plans are generated on demand. We demonstrate a parallelized implementation of the algorithm on a Graphics Processor Unit (GPU) which we term FastMDP-GPU and show the level of performance and scaling that can be achieved. Our results show that on commodity GPU hardware we can perform flight plan scheduling against 2000-3000 known flight plans and with server-class hardware the performance can be higher. We believe the results show promise for implementing a large scale UAM scheduler capable of performing on-demand flight scheduling that would be suitable for both a centralized or distributed flight planning system

View on arXiv
Comments on this paper