ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.03088
19
38

Pretraining Techniques for Sequence-to-Sequence Voice Conversion

7 August 2020
Wen-Chin Huang
Tomoki Hayashi
Yi-Chiao Wu
Hirokazu Kameoka
T. Toda
ArXivPDFHTML
Abstract

Sequence-to-sequence (seq2seq) voice conversion (VC) models are attractive owing to their ability to convert prosody. Nonetheless, without sufficient data, seq2seq VC models can suffer from unstable training and mispronunciation problems in the converted speech, thus far from practical. To tackle these shortcomings, we propose to transfer knowledge from other speech processing tasks where large-scale corpora are easily available, typically text-to-speech (TTS) and automatic speech recognition (ASR). We argue that VC models initialized with such pretrained ASR or TTS model parameters can generate effective hidden representations for high-fidelity, highly intelligible converted speech. We apply such techniques to recurrent neural network (RNN)-based and Transformer based models, and through systematical experiments, we demonstrate the effectiveness of the pretraining scheme and the superiority of Transformer based models over RNN-based models in terms of intelligibility, naturalness, and similarity.

View on arXiv
Comments on this paper