ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.02992
13
1

Leveraging Localization for Multi-camera Association

7 August 2020
Zhongang Cai
Cunjun Yu
Junzhe Zhang
Jiawei Ren
Haiyu Zhao
    HAI
ArXivPDFHTML
Abstract

We present McAssoc, a deep learning approach to the as-sociation of detection bounding boxes in different views ofa multi-camera system. The vast majority of the academiahas been developing single-camera computer vision algo-rithms, however, little research attention has been directedto incorporating them into a multi-camera system. In thispaper, we designed a 3-branch architecture that leveragesdirect association and additional cross localization infor-mation. A new metric, image-pair association accuracy(IPAA) is designed specifically for performance evaluationof cross-camera detection association. We show in the ex-periments that localization information is critical to suc-cessful cross-camera association, especially when similar-looking objects are present. This paper is an experimentalwork prior to MessyTable, which is a large-scale bench-mark for instance association in mutliple cameras.

View on arXiv
Comments on this paper