ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.01180
20
10

Describing Textures using Natural Language

3 August 2020
Chenyun Wu
Mikayla Timm
Subhransu Maji
    3DV
ArXivPDFHTML
Abstract

Textures in natural images can be characterized by color, shape, periodicity of elements within them, and other attributes that can be described using natural language. In this paper, we study the problem of describing visual attributes of texture on a novel dataset containing rich descriptions of textures, and conduct a systematic study of current generative and discriminative models for grounding language to images on this dataset. We find that while these models capture some properties of texture, they fail to capture several compositional properties, such as the colors of dots. We provide critical analysis of existing models by generating synthetic but realistic textures with different descriptions. Our dataset also allows us to train interpretable models and generate language-based explanations of what discriminative features are learned by deep networks for fine-grained categorization where texture plays a key role. We present visualizations of several fine-grained domains and show that texture attributes learned on our dataset offer improvements over expert-designed attributes on the Caltech-UCSD Birds dataset.

View on arXiv
Comments on this paper