56
16

Distilling Visual Priors from Self-Supervised Learning

Abstract

Convolutional Neural Networks (CNNs) are prone to overfit small training datasets. We present a novel two-phase pipeline that leverages self-supervised learning and knowledge distillation to improve the generalization ability of CNN models for image classification under the data-deficient setting. The first phase is to learn a teacher model which possesses rich and generalizable visual representations via self-supervised learning, and the second phase is to distill the representations into a student model in a self-distillation manner, and meanwhile fine-tune the student model for the image classification task. We also propose a novel margin loss for the self-supervised contrastive learning proxy task to better learn the representation under the data-deficient scenario. Together with other tricks, we achieve competitive performance in the VIPriors image classification challenge.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.