ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.16162
4
6

Imitative Planning using Conditional Normalizing Flow

31 July 2020
Shubhankar Agarwal
Harshit S. Sikchi
Cole Gulino
Eric Wilkinson
Shivam Gautam
ArXivPDFHTML
Abstract

A popular way to plan trajectories in dynamic urban scenarios for Autonomous Vehicles is to rely on explicitly specified and hand crafted cost functions, coupled with random sampling in the trajectory space to find the minimum cost trajectory. Such methods require a high number of samples to find a low-cost trajectory and might end up with a highly suboptimal trajectory given the planning time budget. We explore the application of normalizing flows for improving the performance of trajectory planning for autonomous vehicles (AVs). Our key insight is to learn a sampling policy in a low-dimensional latent space of expert-like trajectories, out of which the best sample is selected for execution. By modeling the trajectory planner's cost manifold as an energy function, we learn a scene conditioned mapping from the prior to a Boltzmann distribution over the AV control space. Finally, we demonstrate the effectiveness of our approach on real-world datasets over IL and hand-constructed trajectory sampling techniques.

View on arXiv
Comments on this paper