ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15751
114
188
v1v2v3v4v5v6 (latest)

From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling

30 July 2020
W. Tsai
D. Feng
M. Pan
H. Beck
K. Lawson
Yuan Yang
Jiangtao Liu
Chaopeng Shen
    AI4CE
ArXiv (abs)PDFHTML
Abstract

The behaviors and skills of models in many geosciences, e.g., hydrology and ecosystem sciences, strongly depend on spatially varying parameters that need calibration. Here we propose a novel differentiable parameter learning (dPL) framework that solves a pattern recognition problem and learns a more robust, universal mapping. Crucially, dPL exhibits virtuous scaling curves not previously demonstrated to geoscientists: as training data collectively increases, dPL achieves better performance, more physical coherence, and better generalization, all with orders-of-magnitude lower computational cost. We demonstrate examples of calibrating models to soil moisture and streamflow, where dPL drastically outperformed state-of-the-art evolutionary and regionalization methods, or requires ~12.5% the training data to achieve the similar performance. The generic scheme promotes the integration of deep learning and process-based models, without mandating reimplementation.

View on arXiv
Comments on this paper