ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15072
27
30

Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text Classification

29 July 2020
Xin Luna Dong
Yaxin Zhu
Yupeng Zhang
Zuohui Fu
Dongkuan Xu
Sen Yang
Gerard de Melo
    VLM
ArXivPDFHTML
Abstract

In cross-lingual text classification, one seeks to exploit labeled data from one language to train a text classification model that can then be applied to a completely different language. Recent multilingual representation models have made it much easier to achieve this. Still, there may still be subtle differences between languages that are neglected when doing so. To address this, we present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations. The resulting model then serves as a teacher to induce labels for unlabeled target language samples that can be used during further adversarial training, allowing us to gradually adapt our model to the target language. Compared with a number of strong baselines, we observe significant gains in effectiveness on document and intent classification for a diverse set of languages.

View on arXiv
Comments on this paper