ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.12562
17
6

Hallucinating Saliency Maps for Fine-Grained Image Classification for Limited Data Domains

24 July 2020
Carola Figueroa Flores
Bogdan Raducanu
David Berga
Joost van de Weijer
ArXivPDFHTML
Abstract

Most of the saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline, like for instance, image classification. In the current paper, we propose an approach which does not require explicit saliency maps to improve image classification, but they are learned implicitely, during the training of an end-to-end image classification task. We show that our approach obtains similar results as the case when the saliency maps are provided explicitely. Combining RGB data with saliency maps represents a significant advantage for object recognition, especially for the case when training data is limited. We validate our method on several datasets for fine-grained classification tasks (Flowers, Birds and Cars). In addition, we show that our saliency estimation method, which is trained without any saliency groundtruth data, obtains competitive results on real image saliency benchmark (Toronto), and outperforms deep saliency models with synthetic images (SID4VAM).

View on arXiv
Comments on this paper