ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10983
11
65

Learning Monocular Visual Odometry via Self-Supervised Long-Term Modeling

21 July 2020
Yuliang Zou
Pan Ji
Quoc-Huy Tran
Jia-Bin Huang
Manmohan Chandraker
    SSL
ArXivPDFHTML
Abstract

Monocular visual odometry (VO) suffers severely from error accumulation during frame-to-frame pose estimation. In this paper, we present a self-supervised learning method for VO with special consideration for consistency over longer sequences. To this end, we model the long-term dependency in pose prediction using a pose network that features a two-layer convolutional LSTM module. We train the networks with purely self-supervised losses, including a cycle consistency loss that mimics the loop closure module in geometric VO. Inspired by prior geometric systems, we allow the networks to see beyond a small temporal window during training, through a novel a loss that incorporates temporally distant (e.g., O(100)) frames. Given GPU memory constraints, we propose a stage-wise training mechanism, where the first stage operates in a local time window and the second stage refines the poses with a "global" loss given the first stage features. We demonstrate competitive results on several standard VO datasets, including KITTI and TUM RGB-D.

View on arXiv
Comments on this paper