ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10532
11
7

Towards Ground Truth Explainability on Tabular Data

20 July 2020
Brian Barr
Ke Xu
Claudio Silva
E. Bertini
Robert Reilly
C. Bayan Bruss
J. Wittenbach
ArXivPDFHTML
Abstract

In data science, there is a long history of using synthetic data for method development, feature selection and feature engineering. Our current interest in synthetic data comes from recent work in explainability. Today's datasets are typically larger and more complex - requiring less interpretable models. In the setting of \textit{post hoc} explainability, there is no ground truth for explanations. Inspired by recent work in explaining image classifiers that does provide ground truth, we propose a similar solution for tabular data. Using copulas, a concise specification of the desired statistical properties of a dataset, users can build intuition around explainability using controlled data sets and experimentation. The current capabilities are demonstrated on three use cases: one dimensional logistic regression, impact of correlation from informative features, impact of correlation from redundant variables.

View on arXiv
Comments on this paper