We present a significant extension of the latent position network model known as the generalised random dot product graph to accommodate multiple graphs -- both undirected and directed -- which share a common subset of nodes, and propose a method for jointly embedding the associated adjacency matrices, or submatrices thereof, into a suitable latent space. Theoretical results concerning the asymptotic behaviour of the node representations thus obtained are established, showing that after the application of a linear transformation these converge uniformly in the Euclidean norm to the latent positions with Gaussian error. The flexibility of the model is demonstrated through application to the tasks of latent position recovery and two-graph hypothesis testing, in which it performs favourably compared to existing models. Empirical improvements in link prediction over single graph embeddings are exhibited in a cyber-security example.
View on arXiv