ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10206
9
22

Maximum likelihood estimation for matrix normal models via quiver representations

20 July 2020
H. Derksen
V. Makam
ArXivPDFHTML
Abstract

In this paper, we study the log-likelihood function and Maximum Likelihood Estimate (MLE) for the matrix normal model for both real and complex models. We describe the exact number of samples needed to achieve (almost surely) three conditions, namely a bounded log-likelihood function, existence of MLEs, and uniqueness of MLEs. As a consequence, we observe that almost sure boundedness of log-likelihood function guarantees almost sure existence of an MLE, thereby proving a conjecture of Drton, Kuriki and Hoff. The main tools we use are from the theory of quiver representations, in particular, results of Kac, King and Schofield on canonical decomposition and stability.

View on arXiv
Comments on this paper