ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10087
6
6

Shopping in the Multiverse: A Counterfactual Approach to In-Session Attribution

20 July 2020
Jacopo Tagliabue
Bingqing Yu
ArXivPDFHTML
Abstract

We tackle the challenge of in-session attribution for on-site search engines in eCommerce. We phrase the problem as a causal counterfactual inference, and contrast the approach with rule-based systems from industry settings and prediction models from the multi-touch attribution literature. We approach counterfactuals in analogy with treatments in formal semantics, explicitly modeling possible outcomes through alternative shopper timelines; in particular, we propose to learn a generative browsing model over a target shop, leveraging the latent space induced by prod2vec embeddings; we show how natural language queries can be effectively represented in the same space and how "search intervention" can be performed to assess causal contribution. Finally, we validate the methodology on a synthetic dataset, mimicking important patterns emerged in customer interviews and qualitative analysis, and we present preliminary findings on an industry dataset from a partnering shop.

View on arXiv
Comments on this paper