ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.09590
11
56

AWR: Adaptive Weighting Regression for 3D Hand Pose Estimation

19 July 2020
Weiting Huang
Pengfei Ren
Jingyu Wang
Q. Qi
Haifeng Sun
    3DH
ArXivPDFHTML
Abstract

In this paper, we propose an adaptive weighting regression (AWR) method to leverage the advantages of both detection-based and regression-based methods. Hand joint coordinates are estimated as discrete integration of all pixels in dense representation, guided by adaptive weight maps. This learnable aggregation process introduces both dense and joint supervision that allows end-to-end training and brings adaptability to weight maps, making the network more accurate and robust. Comprehensive exploration experiments are conducted to validate the effectiveness and generality of AWR under various experimental settings, especially its usefulness for different types of dense representation and input modality. Our method outperforms other state-of-the-art methods on four publicly available datasets, including NYU, ICVL, MSRA and HANDS 2017 dataset.

View on arXiv
Comments on this paper