ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.09470
19
86

Social Adaptive Module for Weakly-supervised Group Activity Recognition

18 July 2020
Rui Yan
Lingxi Xie
Jinhui Tang
Xiangbo Shu
Qi Tian
ArXivPDFHTML
Abstract

This paper presents a new task named weakly-supervised group activity recognition (GAR) which differs from conventional GAR tasks in that only video-level labels are available, yet the important persons within each frame are not provided even in the training data. This eases us to collect and annotate a large-scale NBA dataset and thus raise new challenges to GAR. To mine useful information from weak supervision, we present a key insight that key instances are likely to be related to each other, and thus design a social adaptive module (SAM) to reason about key persons and frames from noisy data. Experiments show significant improvement on the NBA dataset as well as the popular volleyball dataset. In particular, our model trained on video-level annotation achieves comparable accuracy to prior algorithms which required strong labels.

View on arXiv
Comments on this paper