ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08775
21
21

A Privacy-Preserving Machine Learning Scheme Using EtC Images

17 July 2020
Ayana Kawamura
Yuma Kinoshita
T. Nakachi
Sayaka Shiota
Hitoshi Kiya
ArXivPDFHTML
Abstract

We propose a privacy-preserving machine learning scheme with encryption-then-compression (EtC) images, where EtC images are images encrypted by using a block-based encryption method proposed for EtC systems with JPEG compression. In this paper, a novel property of EtC images is first discussed, although EtC ones was already shown to be compressible as a property. The novel property allows us to directly apply EtC images to machine learning algorithms non-specialized for computing encrypted data. In addition, the proposed scheme is demonstrated to provide no degradation in the performance of some typical machine learning algorithms including the support vector machine algorithm with kernel trick and random forests under the use of z-score normalization. A number of facial recognition experiments with are carried out to confirm the effectiveness of the proposed scheme.

View on arXiv
Comments on this paper