ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08722
22
2

A Technical Report for VIPriors Image Classification Challenge

17 July 2020
Zhipeng Luo
Ge Li
Zhiguang Zhang
    VLM
ArXivPDFHTML
Abstract

Image classification has always been a hot and challenging task. This paper is a brief report to our submission to the VIPriors Image Classification Challenge. In this challenge, the difficulty is how to train the model from scratch without any pretrained weight. In our method, several strong backbones and multiple loss functions are used to learn more representative features. To improve the models' generalization and robustness, efficient image augmentation strategies are utilized, like autoaugment and cutmix. Finally, ensemble learning is used to increase the performance of the models. The final Top-1 accuracy of our team DeepBlueAI is 0.7015, ranking second in the leaderboard.

View on arXiv
Comments on this paper