47
98

OptChain: Optimal Transactions Placement for Scalable Blockchain Sharding

Abstract

A major challenge in blockchain sharding protocols is that more than 95% transactions are cross-shard. Not only those cross-shard transactions degrade the system throughput but also double the confirmation time, and exhaust an already scarce network bandwidth. Are cross-shard transactions imminent for sharding schemes? In this paper, we propose a new sharding paradigm, called OptChain, in which cross-shard transactions are minimized, resulting in almost twice faster confirmation time and throughput. By treating transactions as a stream of nodes in an online graph, OptChain utilizes a lightweight and on-the-fly transaction placement method to group both related and soon-related transactions into the same shards. At the same time, OptChain maintains a temporal balance among shards to guarantee the high parallelism. Our comprehensive and large-scale simulation using Oversim P2P library confirms a significant boost in performance with up to 10 folds reduction in cross-shard transactions, more than twice reduction in confirmation time, and 50% increase in throughput. When combined with Omniledger sharding protocol, OptChain delivers a 6000 transactions per second throughput with 10.5s confirmation time.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.