ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.07477
76
11
v1v2 (latest)

Explaining Deep Neural Networks using Unsupervised Clustering

15 July 2020
Yu-Han Liu
Sercan O. Arik
    SSLAI4CE
ArXiv (abs)PDFHTML
Abstract

We propose a novel method to explain trained deep neural networks (DNNs), by distilling them into surrogate models using unsupervised clustering. Our method can be applied flexibly to any subset of layers of a DNN architecture and can incorporate low-level and high-level information. On image datasets given pre-trained DNNs, we demonstrate the strength of our method in finding similar training samples, and shedding light on the concepts the DNNs base their decisions on. Via user studies, we show that our model can improve the user trust in model's prediction.

View on arXiv
Comments on this paper