ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.07203
9
21

Deep Retrieval: Learning A Retrievable Structure for Large-Scale Recommendations

12 July 2020
Weihao Gao
Xiangjun Fan
Chong-Jun Wang
Jiankai Sun
Kai Jia
Wen Xiao
Ruofan Ding
Xingyan Bin
Hui Yang
Xiaobing Liu
    CML
ArXivPDFHTML
Abstract

One of the core problems in large-scale recommendations is to retrieve top relevant candidates accurately and efficiently, preferably in sub-linear time. Previous approaches are mostly based on a two-step procedure: first learn an inner-product model, and then use some approximate nearest neighbor (ANN) search algorithm to find top candidates. In this paper, we present Deep Retrieval (DR), to learn a retrievable structure directly with user-item interaction data (e.g. clicks) without resorting to the Euclidean space assumption in ANN algorithms. DR's structure encodes all candidate items into a discrete latent space. Those latent codes for the candidates are model parameters and learnt together with other neural network parameters to maximize the same objective function. With the model learnt, a beam search over the structure is performed to retrieve the top candidates for reranking. Empirically, we first demonstrate that DR, with sub-linear computational complexity, can achieve almost the same accuracy as the brute-force baseline on two public datasets. Moreover, we show that, in a live production recommendation system, a deployed DR approach significantly outperforms a well-tuned ANN baseline in terms of engagement metrics. To the best of our knowledge, DR is among the first non-ANN algorithms successfully deployed at the scale of hundreds of millions of items for industrial recommendation systems.

View on arXiv
Comments on this paper