ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06925
31
26

A Graph-based Interactive Reasoning for Human-Object Interaction Detection

14 July 2020
Dongming Yang
Yuexian Zou
ArXivPDFHTML
Abstract

Human-Object Interaction (HOI) detection devotes to learn how humans interact with surrounding objects via inferring triplets of < human, verb, object >. However, recent HOI detection methods mostly rely on additional annotations (e.g., human pose) and neglect powerful interactive reasoning beyond convolutions. In this paper, we present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs, in which interactive semantics implied among visual targets are efficiently exploited. The proposed model consists of a project function that maps related targets from convolution space to a graph-based semantic space, a message passing process propagating semantics among all nodes and an update function transforming the reasoned nodes back to convolution space. Furthermore, we construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet. Beyond inferring HOIs using instance features respectively, the framework dynamically parses pairwise interactive semantics among visual targets by integrating two-level in-Graphs, i.e., scene-wide and instance-wide in-Graphs. Our framework is end-to-end trainable and free from costly annotations like human pose. Extensive experiments show that our proposed framework outperforms existing HOI detection methods on both V-COCO and HICO-DET benchmarks and improves the baseline about 9.4% and 15% relatively, validating its efficacy in detecting HOIs.

View on arXiv
Comments on this paper