34
8

Face to Purchase: Predicting Consumer Choices with Structured Facial and Behavioral Traits Embedding

Abstract

Predicting consumers' purchasing behaviors is critical for targeted advertisement and sales promotion in e-commerce. Human faces are an invaluable source of information for gaining insights into consumer personality and behavioral traits. However, consumer's faces are largely unexplored in previous research, and the existing face-related studies focus on high-level features such as personality traits while neglecting the business significance of learning from facial data. We propose to predict consumers' purchases based on their facial features and purchasing histories. We design a semi-supervised model based on a hierarchical embedding network to extract high-level features of consumers and to predict the top-NN purchase destinations of a consumer. Our experimental results on a real-world dataset demonstrate the positive effect of incorporating facial information in predicting consumers' purchasing behaviors.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.