ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06174
31
142

Generating Fluent Adversarial Examples for Natural Languages

13 July 2020
Huangzhao Zhang
Hao Zhou
Ning Miao
Lei Li
    AAML
    GAN
ArXivPDFHTML
Abstract

Efficiently building an adversarial attacker for natural language processing (NLP) tasks is a real challenge. Firstly, as the sentence space is discrete, it is difficult to make small perturbations along the direction of gradients. Secondly, the fluency of the generated examples cannot be guaranteed. In this paper, we propose MHA, which addresses both problems by performing Metropolis-Hastings sampling, whose proposal is designed with the guidance of gradients. Experiments on IMDB and SNLI show that our proposed MHA outperforms the baseline model on attacking capability. Adversarial training with MAH also leads to better robustness and performance.

View on arXiv
Comments on this paper