ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06077
92
0

Sparse Graph to Sequence Learning for Vision Conditioned Long Textual Sequence Generation

12 July 2020
Aditya Mogadala
Marius Mosbach
Dietrich Klakow
    VLM
ArXivPDFHTML
Abstract

Generating longer textual sequences when conditioned on the visual information is an interesting problem to explore. The challenge here proliferate over the standard vision conditioned sentence-level generation (e.g., image or video captioning) as it requires to produce a brief and coherent story describing the visual content. In this paper, we mask this Vision-to-Sequence as Graph-to-Sequence learning problem and approach it with the Transformer architecture. To be specific, we introduce Sparse Graph-to-Sequence Transformer (SGST) for encoding the graph and decoding a sequence. The encoder aims to directly encode graph-level semantics, while the decoder is used to generate longer sequences. Experiments conducted with the benchmark image paragraph dataset show that our proposed achieve 13.3% improvement on the CIDEr evaluation measure when comparing to the previous state-of-the-art approach.

View on arXiv
Comments on this paper