ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04486
9
10

Making learning more transparent using conformalized performance prediction

9 July 2020
Matthew J. Holland
    FedML
ArXivPDFHTML
Abstract

In this work, we study some novel applications of conformal inference techniques to the problem of providing machine learning procedures with more transparent, accurate, and practical performance guarantees. We provide a natural extension of the traditional conformal prediction framework, done in such a way that we can make valid and well-calibrated predictive statements about the future performance of arbitrary learning algorithms, when passed an as-yet unseen training set. In addition, we include some nascent empirical examples to illustrate potential applications.

View on arXiv
Comments on this paper