ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04245
11
1

Mental representations of objects reflect the ways in which we interact with them

22 June 2020
K. Lam
Francisco Pereira
M. Vaziri-Pashkam
Kristina Woodard
Emalie McMahon
    OCL
ArXivPDFHTML
Abstract

In order to interact with objects in our environment, humans rely on an understanding of the actions that can be performed on them, as well as their properties. When considering concrete motor actions, this knowledge has been called the object affordance. Can this notion be generalized to any type of interaction that one can have with an object? In this paper we introduce a method to represent objects in a space where each dimension corresponds to a broad mode of interaction, based on verb selectional preferences in text corpora. This object embedding makes it possible to predict human judgments of verb applicability to objects better than a variety of alternative approaches. Furthermore, we show that the dimensions in this space can be used to predict categorical and functional dimensions in a state-of-the-art mental representation of objects, derived solely from human judgements of object similarity. These results suggest that interaction knowledge accounts for a large part of mental representations of objects.

View on arXiv
Comments on this paper