ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.03248
17
10

A Constraint-Based Algorithm for the Structural Learning of Continuous-Time Bayesian Networks

7 July 2020
Alessandro Bregoli
M. Scutari
Fabio Stella
    CML
ArXivPDFHTML
Abstract

Dynamic Bayesian networks have been well explored in the literature as discrete-time models: however, their continuous-time extensions have seen comparatively little attention. In this paper, we propose the first constraint-based algorithm for learning the structure of continuous-time Bayesian networks. We discuss the different statistical tests and the underlying hypotheses used by our proposal to establish conditional independence. Furthermore, we analyze and discuss the computational complexity of the best and worst cases for the proposed algorithm. Finally, we validate its performance using synthetic data, and we discuss its strengths and limitations comparing it with the score-based structure learning algorithm from Nodelman et al. (2003). We find the latter to be more accurate in learning networks with binary variables, while our constraint-based approach is more accurate with variables assuming more than two values. Numerical experiments confirm that score-based and constraint-based algorithms are comparable in terms of computation time.

View on arXiv
Comments on this paper