ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.02766
9
1

Building Reservoir Computing Hardware Using Low Energy-Barrier Magnetics

6 July 2020
S. Ganguly
Avik W. Ghosh
ArXivPDFHTML
Abstract

Biologically inspired recurrent neural networks, such as reservoir computers are of interest in designing spatio-temporal data processors from a hardware point of view due to the simple learning scheme and deep connections to Kalman filters. In this work we discuss using in-depth simulation studies a way to construct hardware reservoir computers using an analog stochastic neuron cell built from a low energy-barrier magnet based magnetic tunnel junction and a few transistors. This allows us to implement a physical embodiment of the mathematical model of reservoir computers. Compact implementation of reservoir computers using such devices may enable building compact, energy-efficient signal processors for standalone or in-situ machine cognition in edge devices.

View on arXiv
Comments on this paper