ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.02598
41
3
v1v2 (latest)

Reflection-based Word Attribute Transfer

6 July 2020
Yoichi Ishibashi
Katsuhito Sudoh
Koichiro Yoshino
Satoshi Nakamura
    CVBM
ArXiv (abs)PDFHTML
Abstract

Word embeddings, which often represent such analogic relations as king - man + woman = queen, can be used to change a word's attribute, including its gender. For transferring king into queen in this analogy-based manner, we subtract a difference vector man - woman based on the knowledge that king is male. However, developing such knowledge is very costly for words and attributes. In this work, we propose a novel method for word attribute transfer based on reflection mappings without such an analogy operation. Experimental results show that our proposed method can transfer the word attributes of the given words without changing the words that do not have the target attributes.

View on arXiv
Comments on this paper