LIVEJoin the current RTAI Connect sessionJoin now

34
23

DRDr: Automatic Masking of Exudates and Microaneurysms Caused By Diabetic Retinopathy Using Mask R-CNN and Transfer Learning

Abstract

This paper addresses the problem of identifying two main types of lesions - Exudates and Microaneurysms - caused by Diabetic Retinopathy (DR) in the eyes of diabetic patients. We make use of Convolutional Neural Networks (CNNs) and Transfer Learning to locate and generate high-quality segmentation mask for each instance of the lesion that can be found in the patients' fundus images. We create our normalized database out of e-ophtha EX and e-ophtha MA and tweak Mask R-CNN to detect small lesions. Moreover, we employ data augmentation and the pre-trained weights of ResNet101 to compensate for our small dataset. Our model achieves promising test mAP of 0.45, altogether showing that it can aid clinicians and ophthalmologist in the process of detecting and treating the infamous DR.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.