ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.00723
6
9

Scalable Monte Carlo Inference and Rescaled Local Asymptotic Normality

1 July 2020
Ning Ning
E. Ionides
Yaácov Ritov
ArXivPDFHTML
Abstract

In this paper, we generalize the property of local asymptotic normality (LAN) to an enlarged neighborhood, under the name of rescaled local asymptotic normality (RLAN). We obtain sufficient conditions for a regular parametric model to satisfy RLAN. We show that RLAN supports the construction of a statistically efficient estimator which maximizes a cubic approximation to the log-likelihood on this enlarged neighborhood. In the context of Monte Carlo inference, we find that this maximum cubic likelihood estimator can maintain its statistical efficiency in the presence of asymptotically increasing Monte Carlo error in likelihood evaluation.

View on arXiv
Comments on this paper