30
20

Accelerating Uncertainty Quantification of Groundwater Flow Modelling Using Deep Neural Networks

Abstract

Quantifying the uncertainty in model parameters and output is a critical component in model-driven decision support systems for groundwater management. This paper presents a novel algorithmic approach which fuses Markov Chain Monte Carlo (MCMC) and Machine Learning methods to accelerate uncertainty quantification for groundwater flow models. We formulate the governing mathematical model as a Bayesian inverse problem, considering model parameters as a random process with an underlying probability distribution. MCMC allows us to sample from this distribution, but it comes with some limitations: it can be prohibitively expensive when dealing with costly likelihood functions, subsequent samples are often highly correlated, and the standard Metropolis-Hastings algorithm suffers from the curse of dimensionality. This paper designs a Metropolis-Hastings proposal which exploits a deep neural network (DNN) approximation of the model, to significantly accelerate the Bayesian computations. We modify a delayed acceptance (DA) model hierarchy, whereby proposals are generated by running short subchains using an inexpensive DNN approximation, resulting in a decorrelation of subsequent fine model proposals. Using a simple adaptive error model, we estimate and correct the bias of the DNN approximation with respect to the posterior distribution on-the-fly. The approach is tested on two synthetic examples; a isotropic two-dimensional problem, and an anisotrpoic three-dimensional problem. The results show that the cost of uncertainty quantification can be reduced by up to 75% compared to single-level MCMC, depending on the precomputation cost and accuracy of the employed DNN.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.