ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15873
22
2

Abnormal activity capture from passenger flow of elevator based on unsupervised learning and fine-grained multi-label recognition

29 June 2020
Chunhua Jia
Wenhai Yi
Yu Wu
Hui Huang
Lei Zhang
Leilei Wu
ArXivPDFHTML
Abstract

We present a work-flow which aims at capturing residents' abnormal activities through the passenger flow of elevator in multi-storey residence buildings. Camera and sensors (hall sensor, photoelectric sensor, gyro, accelerometer, barometer, and thermometer) with internet connection are mounted in elevator to collect image and data. Computer vision algorithms such as instance segmentation, multi-label recognition, embedding and clustering are applied to generalize passenger flow of elevator, i.e. how many people and what kinds of people get in and out of the elevator on each floor. More specifically in our implementation we propose GraftNet, a solution for fine-grained multi-label recognition task, to recognize human attributes, e.g. gender, age, appearance, and occupation. Then anomaly detection of unsupervised learning is hierarchically applied on the passenger flow data to capture abnormal or even illegal activities of the residents which probably bring safety hazard, e.g. drug dealing, pyramid sale gathering, prostitution, and over crowded residence. Experiment shows effects are there, and the captured records will be directly reported to our customer(property managers) for further confirmation.

View on arXiv
Comments on this paper