ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.14863
19
31

Domain Contrast for Domain Adaptive Object Detection

26 June 2020
Feng Liu
Xiaosong Zhang
Fang Wan
Xiangyang Ji
QiXiang Ye
ArXivPDFHTML
Abstract

We present Domain Contrast (DC), a simple yet effective approach inspired by contrastive learning for training domain adaptive detectors. DC is deduced from the error bound minimization perspective of a transferred model, and is implemented with cross-domain contrast loss which is plug-and-play. By minimizing cross-domain contrast loss, DC guarantees the transferability of detectors while naturally alleviating the class imbalance issue in the target domain. DC can be applied at either image level or region level, consistently improving detectors' transferability and discriminability. Extensive experiments on commonly used benchmarks show that DC improves the baseline and state-of-the-art by significant margins, while demonstrating great potential for large domain divergence.

View on arXiv
Comments on this paper