ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.14221
13
6

Modeling Baroque Two-Part Counterpoint with Neural Machine Translation

25 June 2020
Eric Nichols
Stefano Kalonaris
G. Micchi
Anna Aljanaki
ArXivPDFHTML
Abstract

We propose a system for contrapuntal music generation based on a Neural Machine Translation (NMT) paradigm. We consider Baroque counterpoint and are interested in modeling the interaction between any two given parts as a mapping between a given source material and an appropriate target material. Like in translation, the former imposes some constraints on the latter, but doesn't define it completely. We collate and edit a bespoke dataset of Baroque pieces, use it to train an attention-based neural network model, and evaluate the generated output via BLEU score and musicological analysis. We show that our model is able to respond with some idiomatic trademarks, such as imitation and appropriate rhythmic offset, although it falls short of having learned stylistically correct contrapuntal motion (e.g., avoidance of parallel fifths) or stricter imitative rules, such as canon.

View on arXiv
Comments on this paper