ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13999
4
3

MCAL: Minimum Cost Human-Machine Active Labeling

24 June 2020
Hang Qiu
Krishna Chintalapudi
Ramesh Govindan
ArXivPDFHTML
Abstract

Today, ground-truth generation uses data sets annotated by cloud-based annotation services. These services rely on human annotation, which can be prohibitively expensive. In this paper, we consider the problem of hybrid human-machine labeling, which trains a classifier to accurately auto-label part of the data set. However, training the classifier can be expensive too. We propose an iterative approach that minimizes total overall cost by, at each step, jointly determining which samples to label using humans and which to label using the trained classifier. We validate our approach on well known public data sets such as Fashion-MNIST, CIFAR-10, CIFAR-100, and ImageNet. In some cases, our approach has 6x lower overall cost relative to human labeling the entire data set, and is always cheaper than the cheapest competing strategy.

View on arXiv
Comments on this paper